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J. Phys. A: Math. Gen. 13 (1980) L403-L408. Printed in Great Britain 

LETTER TO THE EDITOR 

Crossover from percolation to random animals and 
compact clusters 

Fereydoon Family and Antonio Conigliot 
Center for Polymer Studies and Department of Physics, Boston University, Boston, 
MA 02215, USA 

Received 27 August 1980 

Abstract. We introduce a field-like variable to develop a generating function for the 
percolation problem which, in the appropriate limits, also describes the statistics of random 
animals (dilute branched polymers) and compact clusters (collapsed branched polymers). In 
this description, we study the crossover from percolation to random animals and compact 
clusters using a two-parameter position space renormalisation-group approach. We obtain 
the global flow diagram in the two-parameter space and calculate the critical properties. We 
find that the critical behaviour is described below the percolation threshold p c  by the 
random-animal fixed point, and above p c  by the compact-cluster fixed point. We also 
propose a Hamiltonian formulation using the Q-state Potts model. We show that the 
crossover from percolation to random animals can be described by taking a specific limit of 
the field-like variable. 

1. Introduction 

Percolation has recently attracted considerable attention because it exhibits all the 
intricate complexities of second-order phase transitions, and also because it can be used 
to describe a wide variety of physical systems (see e.g. Stauffer (1979), Essam (1980) 
and references therein). In addition, percolation theory serves as a simple introduction 
to cluster-approximation approaches to collective phenomena. 

In pure percolation, elements (usually taken to be site8 or bonds on a lattice) are 
placed entirely at random. Each element is occupied with a probability p and is empty 
with a probability q = 1 - p ,  independent of the occupation of all other elements. A 
cluster of size s is defined as s elements connected by nearest-neighbour distances. Each 
finite cluster is terminated by unoccupied elements called perimeter sites. An indivi- 
dual cluster of size s and t perimeter sites. is weighted by psqq’ .  Accordingly the 
percolation generating function is defined by 

where gsr is the number of geometrically different cluster configurations of s sites with 
perimeter t. The parameter h is a ‘field-like’ quantity which couples to every occupied 
site. The successive derivatives of F ( p ,  h )  with respect to h, evaluated at h = 0, give the 
moments of the cluster-size distribution function. 

t Permanent address: GNSM and Istituto Di Fisica Teorica, Mostra d’oltremare, Pad. 19, 80125 Napoli, 
Italy. 
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However, other statistical weightings can be assigned to probe different cluster 
properties. One such procedure is to weight all configurations of perimeter sites 
equally-that is, to let q = 1 and weight a cluster only by the number of its occupied 
sites. In this way one obtains the statistics of all possible geometrically distinct s-site 
clusters. These are usually called random animals, because they represent all the 
possible ‘animals’ that one can ‘create’ out of a fixed number of ‘cells’ (for early 
references see Domb (1976)). The random-animal generating function can be written 
as 

where K is the fugacity, or weight, that is assigned to each site (or bond) on the cluster. 
The sum C,gsr gives the total number of animals of size s, and has been extensively 
studied by exact enumeration for several common lattices up to nine dimensions (see 
Gaunt (1980) and references therein). Random animals have also been used as a model 
for branched polymers in the dilute limit (Lubensky and Isaacson 1979, Family 1980). 
Another way to weight the clusters is to take the limit q + 0. Obviously, the ensemble of 
clusters left are only those with the smallest perimeter, i.e. compact clusters. In analogy 
with linear polymers, compact clusters can be used to describe collapsed branched 
polymers. 

The difference between the three models that we have described is the statistical 
weights that are given to the clusters. However, we can describe all three models within 
a unified theory. To do this, we consider (1) and allow h to take on negative, as well as 
positive, values. Then, we define a new independent fugacity-like parameter K by 
K = eChp. This definition of K allows us to maintain the probabilistic interpretation for 
p and q, i.e. p = 1 - q, and to study the limit p -* 0 by letting h + -a with K finite. In this 
way, (1) can be rewritten as 

In the limit q 3 1 and K finite, (3) reduces to the animal generating function (2). The 
limit q + 0 of (3) describes the statistics of compact clusters. 

In this Letter we study the crossover from percolation to random animals and 
compact clusters in two ways: (1) using a two-parameter position space renormalisation 
group (PSRG) and (2) using the Q-state Potts model formulation. In the PSRG approach, 
we obtain the global flow diagram in the two-parameter space and calculate the critical 
properties. By studying the Q-state Potts model Hamiltonian, we show that the 
crossover from percolation to random animals can be described by taking a specific limit 
of the field-like variable. 

2. Position space renormalisation group 

We use the cell PSRG approach of Reynolds et a1 (1980) for percolation on a triangular 
lattice. In this method, a cell-to-site renormalisation is carried out using the criterion of 
finding a connectcd path spanning the cell. For the triangular lattice the simplest cell 
consists of three sites. This cell reduces to a single site on the renormalised lattice whose 
lattice spacing is rescaled by a factor of h = 3”*. Applying the spanning rule to the 
three-site cell, we see that the cell spans if all three sites are occupied or if any two sites 
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are present and one is vacant. Thus, the renormalised site probability p'  is given by 
3 2  p ' = p  +3p q. (4) 

This recursion relation gives an KG transformation for pure percolation in the absence 
of a field. 

To calculate the recursion relation for the fugacity K and the probability q in the 
generating function (3), we use an analogous renormalisation criterion to define a 
renormalised fugacity K' by 

where the sum is over all the spanning clusters [C,,,] of size s and perimeter t. All 
spanning clusters are mapped into a single site with a weight K'. Therefore, for the 
three-site triangular cell we have 

K'= K3+3K24.  (6) 
A similar RG has recently been developed for the study of linear and branched polymers 
on a square lattice (Family 1980). 

To renormalise the probability q, we use the relation 4 = 1 - p  in (4) and find 

4'=q3+3q2(1-4) .  (7)  
The coupled recursion relations (6 )  and (7) constitute a two-parameter RG trans- 
formation for the percolation problem in the presence of a field. These equations may 
be solved numerically for the fixed points, critical surface and critical exponents. The 
global flow diagram is shown in figure 1. From (6)  and (7)  we find the fixed points of the 
transformation at (K'  = K = K", q' = 4 = q*).  These equations have nine fixed points 
as shown in figure 1. The three critical fixed points of interest are indicated by solid dots 
on the diagram and their values are listed in table 1. 

The most unstable fixed point is the percolation fixed point. Starting near this fixed 
point, the flow on the critical surface is either to the animal fixed point (at 4 = 1) or to the 

K 

4 

Figure 1. The renormalisation-group flow diagram from equations (6) and (7). The three 
fixed points of interest are shown as solid dots. The fixed point at the centre of the diagram is 
the percolation fixed point. Random-animal and compact-cluster fixed points are explicitly 
indicated on the diagram. 
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Table 1. Summary of the PSRG results for the three fixed points of interest. Best estimates 
for the exponents are given in parentheses. 

Fixed point K* 4* VK YP 

Random animal 0.3028 1 0.7444 - 

Percolation 2 I 0,6774 1.3547 

Compact cluster 1 0 3 

(0.65 j: 0.02") 

(0.53 i0 .02")  ( 1 ~ 3 3 3 3 ~ )  

- 1 1 

1 - 
(Exact) 

a Stauffer and Holl (1980, to be published). 
Eschbach e t  al (1980). 

compact-cluster fixed point (at q = 0). Note that all the critical behaviour below p c  is 
governed by the animal fixed point, and all critical behaviour above p c  is controlled by 
the compact-cluster fixed point. 

The eigenvalues of the linearised recursion relations are obtained as usual by 
computing the eigenvalues of the matrir 

Top = aa'/ap where a, p = K or q, (8) 

evaluated at the critical fixed points. From (7) we see that dq'/aK = 0, so that the 
eigenvalues are 

A K  = 3K2+6KqlK*,4* and A, = -6q2+6qlK*,,*.  (9) 

The correlation length exponent vp for percolation is given by vp = ln(b)/ln(A,), and the 
exponent vK is given by vK = ln(b)/ln(AK). Using scaling arguments (Stauffer 1979, 
Essam 1980) this exponent can be related to the cluster size s by 

I$--SVK (S -+ a) (10) 

where 6 is the mean end-to-end length of the cluster. The results for the exponents at 
the three critical fixed points of interest are listed in table 1. 

The exponent vK has been determined by Stauffer (1979) (who calls it p ( p ) )  and by 
Stauffer and Holl (1980, to be published), using Monte Carlo and series techniques. 
They find that vK varies continuously with p .  This is an artifact of the numerical 
methods. Using the RG equations, we find only three critical behaviours, and therefore 
vK has only three values. This implies that large finite clusters have three different 
degrees of ramification for p < p c ,  p = p c ,  and p > p c i .  In the language of fractals 
(Mandelbrot (1977); see also 8 4.3 in Stauffer (1979)), this indicates that clusters below 
p c  have the same fractal dimension as random animals, and above p c  clusters are fully 
compact and the fractal dimension of the clusters equals the Euclidean dimension. We 
can show that in any dimension d the RG transformation gives vK = l / d  for compact 

t Note that, although below and above p c  the probability of having a large finite cluster is negligible, one can 
nevertheless study the statistics of a cluster of any size s by considering a restricted ensemble where only one 
single cluster of s elements is present. A configuration of such a cluster is then weighted by p s q r / p s  z q' = 

config d /  z d. 
config 
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clusters. Consider a cell of size bd in d dimensions. In the limit q+O, the recursion 
relation is given by K' = K b d  so that K* = 1, AK = bd and vK = l/d. 

The exponent vK at the percolation threshold is related to the usual percolation 
exponents by (Stauffer 1979) 

vK = v p / ( P p a p )  ( P  = p c ) .  (11) 

C#J = vK/vp =A-', (12) 

Therefore, the crossover exponent C#J is given by 

where A is the gap exponent. Using the numerical values of vK and vp from table 1, we 
find C#J = 0.5. This result can be compared with the best estimate for A-' which is 0.39 
(Stauffer 1979). 

Note that our PSRG approach is general and is not limited to the site problem, the 
triangular lattice, small cells, or the dimensionality of the system. One can follow the 
same procedure for larger cells, on any lattice, by generalising the recursion relations (7) 
and (8). In that case, the overall picture of the flow diagram should remain unchanged. 
However, by going to larger cells (Reynolds er a1 1980) one should be able to obtain 
very accurate estimates for the exponents and other critical properties. 

3. Hamiltonian formulation 

We now give a Hamiltonian formulation for the bond model. Consider the following 
Q-state Potts Hamiltonian (Potts 1952) in an external field, on a regular &dimensional 
lattice: 

cri are Potts variables which can assume Q values vi = 1,2 ,  . . . , Q. It has been shown by 
Wu (1978) that the partition function for this Hamiltonian can be written as 

where q = 1 - p  = eWJ, C is a configuration of bonds in the set of all the bonds E, 
D = E  - C and /Cl and ID1 are the number of bonds in the subsets C and D. The 
product is over all the clusters in the configuration C and nB is the number of bonds in a 
cluster. From (14) we can construct the generating function (1) for the bond problem by 
taking the limit s + 1 of d lg Z/ds. 

If we restrict ourselves to small and positive h we obtain the percolation problem. It 
its well known (Kasteleyn and Fortuin 1974) that percolation is described by the Potts 
model in the limit s + 1. To obtain the random-animal problem, we allow h to take on 
negative values and then take the limit h+-m, q + 1 ,  pe-h=K,  with K finite. 
Therefore, the crossover from percolation to lattice animals can be studied in a 
Hamiltonian formalism by using (13) in the special limits that we have described. 

We would like to thank S Redner, P Reynolds, H Nakanishi, W Klein and H E Stanley 
for interesting discussions and helpful comments. This work was partially supported by 
grants from ARO and AFOSR through Boston University. 
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Note added in proof. After this work was submitted for publication we received two preprints from A B Harris 
and T C Lubensky in which the connection between percolation and lattice animals was discussed. Using a 
field theory approach they find that the percolation point is a multi-critical point; in agreement with our result. 
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